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1. Introduction 

For organisational and historical reasons, astrodynamics tasks within the European Space Agency 

(ESA) and European industry overall have been performed in the past decades with a variety of 

software libraries and tools. In particular, orbit determination and trajectory optimization for Flight 

Dynamics operations at the European Space Operations Centre (ESOC) have been performed in 

the past 20 years with software originally developed in the 90s, the NAvigation Package for Earth 

Orbiting Satellites (NAPEOS, [1]) for Earth orbiters and the Advanced Modular Facility for 

Interplanetary Navigation (AMFIN, [2]) for deep space missions. In parallel, other players such as 

ESOC’s mission analysis, navigation and space debris offices have relied on separate in-house 

tools, while the European industry has developed different solutions.  

In order to modernise the software base, improving its usability, extensibility and maintainability, 

and to homogenize the astrodynamics tasks across different sections, ESA/ESOC started a large 

development effort in 2016 to design and implement a common successor for all these software. 

Such effort has been conceived from the start with an ambitiously wide scope, aiming at providing 

a modular, easily extensible, common library to form the core of all orbit related tasks, primarily 

within the ESA/ESOC Flight Dynamics (FD) division but also for a larger community, including 

other ESA offices and the overall European industry and academia. The result of this effort is 

GODOT, the Generic Orbit Determination and Optimisation Toolkit ([3], [4]), which is available 

under ESA Community License on space-codev ([5]). 

GODOT is written in C++ with both C++ and Python user interfaces, and is available under an 

ESA Community License. GODOT is not a complete end-to-end application, but rather a set of 

libraries for performing generic orbit related computations for estimation, optimisation and orbital 

analysis, practically for any space mission. It was designed with operational orbit determination 

and trajectory optimisation as well as non-operational mission analysis as main applications. 
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However, it can be easily adapted for other astrodynamics scenarios and can even be used for 

attitude propagation and other attitude related tasks. As a consequence of its design as a toolkit, a 

substantial amount of work is required on top of GODOT to derive user libraries and applications.  

Within this frame, Telespazio-Germany (TPZG) has been a key player from the beginning, 

participating with its staff in the GODOT core development as well as in the design and 

implementation of the operational layer for Orbit Determination (OD) of deep space missions. 

TPZG is also leading external projects for the exploitation of GODOT for the ESA Space Debris 

office and for the conversion of the ESOC SIMULUS generic simulation infrastructure to replace 

with GODOT the existing position and environment model (PEM). 

This paper aims to summarise the contributions by Telespazio Germany to the success of GODOT 

and its usage, by describing some of the development and utilisation activities performed by the 

company’s staff for both ESA-internal applications and external projects. 

 

2. GODOT for deep space orbit determination applications 

 

Working together with ESA staff and contractors in the ESOC FD division, Telespazio Germany’s 

staff has largely contributed to the development of the libraries which make up GODOT, as well 

as to the design, implementation, testing and operational validation of the derived deep space OD 

system.  

The OD system for deep space missions shares different software components with other teams 

both within and outside of ESOC’s FD. Its high-level software design is summarised in Figure 1, 

where all the main software components – both in C++ and Python – and data repositories are 

represented, together with their interdependencies. 
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Figure 1. Deep space OD software high level design, covering both C++ and Python parts 

 

The overall deep space OD software has been designed based on a few key drivers: 

• Sharing approach: software and data should be shared where possible, i.e. avoiding 

overcomplicating the development/maintenance for this sole purpose, with the other FD 

subsystems (e.g. manoeuvre optimization, commands generation) for deep space missions 

and with counterparts for Earth orbiting missions. Moreover, GODOT is shared with the 

overall GODOT community, i.e. control over the content and design of its libraries is not 

fully under FD control. 

• Operational constraints: operational software should be written in compiled language, 

scripting languages are only allowed for wrappers, input/output processing, analysis tools, 

etc. GODOT’s main Python interface godotpy, written in Pybind and giving access to most 

classes and their interfaces, cannot therefore be used for operational nor analysis purposes.  

• Modularity and interfaces: the software should be easily extensible and maintainable, 

hence based on object oriented programming paradigm and modern design methods. The 

most basic functionalities should nevertheless also be available with the legacy functional 

programming approach, in particular as interface for other FD subsystems and for enabling 

an interactive analysis environment in support of real-time operations. 

• Generality, flexibility, and usability: The software should be generic, i.e. it should be 

possible to use the same software for all missions by simply adapting the configuration in 

the most simple cases, or by extending its functionalities and/or developing ad-hoc 

scripting tools if needed. Particular emphasis should be put on operational flexibility and 

usability: it should be possible to tackle very different scenarios with the same, modular 

applications; also, any orbit determination expert should be able to easily understand and 

perform simple changes to the configuration, even with limited experience on the system. 

• Accuracy and performances: the software should allow to achieve the “same” results as 

with AMFIN legacy software ([2]), within the accuracy required for OD operations. Also, 

the software should have good performances, to the point of allowing OD operations within 

“reasonable” computational times, although some performance penalty is accepted in front 

of a much higher functional flexibility with respect to the legacy AMFIN software. 

Due to these drivers, the design has naturally evolved to include the features in Figure 1. The main 

operational software is written in C++ and is split in three main layers: 1) the GODOT libraries; 

2) ODLIB, another pure library layer shared with the OD system for Earth orbiters and expanding 

GODOT functionalities for OD tasks; and 3) ODAPP, developed on top of GODOT and ODLIB 

and made mostly of user applications for all operational tasks in support of deep space OD. To 

simplify user utilisation and automate recurring tasks, a wide suite of Python functions and scripts 

is also implemented in ODAPP, covering applications wrapping, inputs/outputs (I/O) processing, 

visualisation tools, etc. For completeness, a top layer similar to ODAPP in terms of functionalities 

was also developed, tailored for support to ESA Earth orbiting missions (e.g. higher focus on 

automation, less on models accuracy). TPZG was not involved in its development, and information 

can be found in a separate paper ([6]).  

Since the full GODOT Python interface cannot be used for operations and a simpler programming 

interface based only on fundamental types must be available as interface to other FD subsystems, 

a separate C-style interface for GODOT is included in the software design. This is called 

GODOTC, is shared with other FD subsystems, and contains basic functions for time and frame 



17th International Conference on Space Operations, Dubai, United Arab Emirates, 6 - 10 March 2023.  
Copyright 2023 by Telespazio Germany GmbH and European Space Agency. Published by the Mohammed Bin Rashid Space Centre (MBRSC) 

on behalf of SpaceOps, with permission and released to the MBRSC to publish in all forms. 

 

4 

conversions, orbit and attitude data access, etc. To provide a connection to the Python world, a 

thin layer interface using Python ctypes for a 1-to-1 representation of the C interface is also 

included in GODOTC, and constitutes the core of an interactive Python analysis environment for 

deep space OD scenarios.  

To complete the OD system, operational data accounts are also represented in Figure 1. For FD 

operations, a large set of data common to all Earth orbiting and deep space missions is maintained 

in a single data account, orbdata. This contains both static data, such as planetary ephemeris or 

gravity fields, and dynamically updated data such as Earth Orientation Parameters (EOP) or solar 

flux files. Finally, each mission requires dedicated data accounts to store the setup, e.g. 

configuration files, environment variables, etc., as well as folders for input data, processing logs 

and outputs. 

Based on the presented software design, the operational workflow and processes for generic OD 

support for any deep space mission are summarised in Figure 2, together with all the main input 

and output data flowing within the internal processes and from/to external parties. Note that the 

diagram is simplified, i.e. only the main processes and data flows are shown, in order to provide a 

clearer understanding of the most typical scenarios. The processes in the figure are representative 

of the three major steps in OD support (pre-processing, OD and orbital products) plus a series of 

auxiliary processes for automation, post-processing and visualisation of the results.  

 

 
Figure 2. Generic operational workflow, processes and inputs/outputs in the OD system. 

 

Pre-processing is performed with a single application named prepro, which is based on a modular 

user interface which executes an arbitrary list of commands, which can be sequentially combined 
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via configuration file to specialise the pre-processing for each mission. For instance, different 

tracking data types can be processed with different prepro commands and combined into one or 

more databases. For example, radiometric data or angular data can be imported in various formats 

specific to different types of ground station modems or antenna controllers in use across ESA 

stations, and both can also be processed from the standard Tracking Data Format (TDM) used for 

inter-agency exchanges. Similarly, station calibrations or media calibrations (e.g. meteo or GNSS 

corrections) can be processed and combined. The outputs of such process are one or more 

observations, calibrations, and media corrections databases (obsDB, calDB and mediaDB), which 

all have a common JSON format but a content which depends on each specific data type. Note that 

exactly the same process is followed for non-radiometric observations, such as antenna angles, 

ground optical observations, GNSS state or even on-board sensors data such as optical imaging or 

altimeters. 

The next step is the OD process, which is performed with the odCmdTool application. Similar to 

prepro, also odCmdTool is based on a set of commands which perform specific tasks and hence 

allow assembling the OD process (or multiple processes) in the way that is most suited for each 

mission. The odCmdTool commands range from very simple tasks such as associating a specific 

object to the observations for modelling to gradually more complex ones such as trajectory 

propagation, observables modelling, OD iterations, mapping of given expressions to one or more 

epochs, etc. A typical operational procedure for most deep space missions would therefore 

combine these building blocks to run a pass-through for data validation, a full orbit determination, 

mapping to specific epochs (e.g. for swing-by targeting), generation and merging of orbit file 

including prediction in the future, and a final passthrough for OD solution verification. These steps 

could be carried out in a single or in multiple runs depending on operational decisions, configuring 

odCmdTool accordingly. 

The final step is the generation of orbital products from an orbit file, which depending on the cases 

can be the orbit as generated by the OD or an external orbit from the MAN subsystem or other 

sources (e.g. for third party missions support). Due to the large number of possible products, a 

suite of different applications is available – each dedicated to the generation of a specific type of 

output. On top of these main three processes described, a wide range of tools – mostly written in 

Python exploiting the GODOTC interface and other common Python libraries – is implemented in 

ODAPP. Providing a detailed description of all these processes is out of the scope of this paper, 

but the most relevant ones are shown in Figure 2. Particularly worth mentioning is the residuals 

editing process using resEditor, a Python tool connected to I/O processing scripts, which allow the 

user to visualise the residuals of any type of observation, together with the associated statistics and 

observation properties. Via the editor, observations deemed to be outliers can be flagged or 

different weights can be applied when needed, generating a prepro configuration file, to be used 

to automatically update via prepro the obsDB files (feedback loop in Figure 2). Other auxiliary 

tools are available at all three steps to summarise the results for user inspection, for instance via 

plots of the tracking data time span or of raw troposphere corrections and fitted polynomials, 

summary tables for the OD solution, plotting of delta-v or range bias estimates, continuous 

accelerations plots, B-plane targeting plots, station or quasar visibility plots, events or time series 

summary tables, etc. 

The input and output external interfaces, exchanged outside of the OD system, are represented in 

dark blue and dark green in Figure 2. The main inputs are all types of observation and correction 
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data from stations or other sensors (range, Doppler, Differential One-way Range or DOR, angles, 

meteo and GNSS corrections, optical measurements, etc.), “context” files generated by the 

command generation subsystem and representing the predicted spacecraft dynamics (attitude, 

articulation angles, etc.) and “history” files generated by ATT and representing reconstructions 

from telemetry or ground models (Solar Radiation Pressure SRP, thruster pulses). The main 

outputs are instead all orbital products to be delivered for various purposes, such as station 

predictions, one-way light-time, orbital events or time series files, and some additional outputs for 

use by other FD subsystems. Among the latter, particularly relevant are the prepro databases 

generated by prepro, and residuals and OD summary files generated by odCmdTool. These files, 

all in JSON format and with content defined by associated schema files which act both as 

validation and as documentation, are the main interface to an independent Test & Validation Orbit 

team (TVO), which is in charge of checking OD solutions and products before they can be sent 

externally.  

TPZG’s staff has provided major contributions at all three levels. At the bottom level, GODOT 

builds upon several third party libraries such as calceph for ephemeris access or eigen for linear 

algebra, and is composed of three main layers: core, a collection of astrodynamics utilities to build 

the higher-level software components; model, a collection of libraries which implement interfaces 

to allow a generic modelling scheme in the subsequent layers and applications; and cosmos, a 

library which provides high level functionalities for common orbit problems. Many of the core, 

model and cosmos libraries were mostly developed by TPZG staff, for instance the frames and 

gravity libraries which allow the generic definition of points, axes and gravitational trees. And all 

others saw major participation of TPZG staff, for instance: core’s tempo (time representation 

library), autodif (automatic differentiation library), and orient (bodies orientation library); model’s 

prop (propagator library); and cosmos’s universe, which provides a single user access point to a 

wide array of functionality, and problem which allows to define equations and parameter settings 

for an OD. TPZG staff has also designed and implemented the GODOTC interface and its 1-to-1 

Python ctypes interface, exposing some selected functionalities of GODOT. 

Both the universe and problem libraries can be conveniently expanded using a plugin system, 

which was exploited at the second level in ODLIB, which expands the GODOT functionalities 

specifically for orbit determination, for all those aspects that are common between Earth orbiting 

and deep space missions. ODLIB is constituted of a util library, which includes generic helper 

classes and functions such as for XML and JSON processing, and four main components: plugins, 

prepro, equations, and products. The plugins library is a container for all extensions to the GODOT 

basic constructs which are useful for OD applications, such as universe and problem. The prepro 

library includes all classes and methods which are required to read, modify, or write any type of 

DataSets which constitute the obsDB, mediaDB and calDB databases shown in Figure 2. Each 

DataSet can store one type of “observation”, a term which is more widely used to also represent 

station calibrations, media corrections, etc. In order to better define the DataSet concept, the 

inheritance diagram of its base and derived classes is shown in Figure 3. Similarly, Figure 4 shows 

the inheritance diagram of the EquationGenerator classes in the ODLIB equations library, which 

expands the list of available equations defined within GODOT’s orbit determination Problem, to 

cover the equation generators connected to ODLIB’s prepro. Finally, the products library includes 

all classes and methods which are required to generate, read, or write data for the orbital products, 

of which the most common are shown in the output interfaces of Figure 2.  
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Figure 3. Inheritance diagram for ODLIB’s DataSet classes. 
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Figure 4. Inheritance diagram for ODLIB’s EquationGenerator classes. 

At the highest level, ODAPP is composed of a C++ and a Python section. The C++ part is 

constituted of main applications and related libraries, targeting specific operational scenarios for 

supporting any kind of deep space mission OD scenario. It relies heavily on the functionalities 

provided by GODOT and ODLIB, where most of the complexity is implemented, and is therefore 

a relatively simple layer. In addition to a small util library and few additional plugins (e.g. quasars 

database dedicated to deep space DDOR measurements), ODAPP/C++ contains the applications 

for the three main processes described above: prepro, odCmdTool and products. The Python part 

consists instead of several Python modules and a suite of Python scripts for a variety of purposes, 

relying on the GODOTC one-to-one Python interface and on other classical Python packages such 

as numpy, matplotlib, json, etc. The modules contain generic, mathematical and input/output 

processing utilities, as well as a general-purpose scripting framework developed for running all 

the applications in the OD system. This latter functionality has the purpose of defining and 

imposing a consistent approach for running any GODOT-based application for deep space OD, 

with an identical user interface and avoiding code duplication. On top of these modules and of the 

GODOTC interface, the ODAPP Python scripts are divided in three categories: wrappers of the 

C++ applications using the framework described above, ioprocessing scripts to generate inputs or 

post-process outputs, with the purpose of automating the generation of input files or better 

visualising output data, and stand-alone tools used to support operations (e.g. plot a trajectory and 

its characteristic parameters or to compare two different orbits).  

Development of the deep space OD system is almost complete, at least for all aspects which allow 

supporting currently flying ESA deep space missions and the upcoming launches of JUICE, 

Euclid, and Hera. TPZG staff has been heavily involved in the design, implementation and testing 

of the ODLIB and ODAPP layers, on top of GODOT itself, and is now leading the operational 

validation of the overall system. Although GODOT, ODLIB and ODAPP make extensive use of 

unit testing and the accuracy of GODOT building blocks has been proven via cross-comparison 

tests against AMFIN and NAPEOS, additional validation activities were set up. Among others, the 

most important were the comparison of dynamics and observables modelling against independent 

TVO software for a JUICE escape trajectory and the parallel OD operations for Solar Orbiter’s 

third Venus swing-by navigation campaign. A detailed description of these activities is beyond the 

scope of the current paper, but a more detailed overview can be found in ([7]). Following these 

activities, confidence in the new ESOC deep space OD system has reached a level sufficient for 

operational deployment. At the beginning of December 2022, the new GODOT-based system 

replaced the legacy AMFIN-based system for Solar Orbiter’s prime OD operations, and it is 

expected to be used in 2023 for the launches of Juice in April and Euclid in July.  
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3. GODOT for Simulus generic simulation infrastructure 

 

Figure 5. Integration of GODOT inside SIMULUS GENM 

 

Within the ESOC operational simulator infrastructure SIMULUS, the Position and Environment 

Model (PEM), as part of the Generic Models (GENM) is responsible for the propagation of the 

orbit of simulated spacecrafts taking into account its physical environment and the forces acting 

on it. It is based on a FORTRAN core with a C/C++ layer around it, allowing the integration into 

the rest of the SIMULUS code written in C++. While providing good performance and high 

execution speed, it has some limitations due to its old age and its architecture: For example, 

variables are stored in a common block memory which limits its use to the simulation of a single 

spacecraft, and the usage of FORTRAN makes the codebase harder to maintain and extend in 

comparison to more modern programming languages. 

 

For these reasons it has been decided to replace the current PEM during the development of 

SIMULUS Next Generation ([10]) with a new environment modelling and orbit propagation 

system based on GODOT. Work has been ongoing at Telespazio Germany on this new system for 

the past year, and it is now nearing its completion. 

 

The simplified summary of the overall architecture is shown in Figure 5. The two innermost 

GODOT layers core and model are used, while no usage is made of the universe layer. The new 

GENM component is split into the two sub-components ATOM and ECOS. The ATOM model is 

responsible for the propagation of a rigid body – a spacecraft or small body – through space, based 

on the gravitational forces acting on it as well as perturbation due to 3rd bodies, atmospheric drag, 

solar radiation pressure, and so on. Any number of ATOM models can be instantiated. The ECOS 
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simulation service provides the physical environment, i.e. the simulation of celestial bodies and 

their gravity fields, atmospheres, solar radiation, and so on.  

 

Both ATOM and ECOS consist of several ECSS-SMP components that can be configured by the 

user via setting of field values. The components contain instances of corresponding GODOT 

classes that perform the calculations. They are set up and configured with the values from the 

components fields. The user also has to provide input files with physical parameters of the models. 

These files are passed on to the GODOT classes. 

 

The orbit propagation is performed in small time steps during the running simulation, a typical 

update cycle is 250 ms. For each time step, the GODOT Propagator class is initialised at the current 

epoch time, the propagation performed and the position and velocity field values of the GENM 

ATOM models are updated. The updated values can then be accessed by other parts of the 

simulator of by the user via Properties. 

 

This discrete time step simulation is not the typical use-case for GODOT, which initially has been 

developed for flight dynamics applications and thus is capable of performing high-precision 

calculations of long orbits in one step using sophisticated numerical integration methods, but has 

not been optimized to do many short propagations with a high frequency.  

 

To improve execution speed, a simplified 4th order Runge-Kutta integrator has been added to 

GODOT for the simulators use case, with a much faster execution than the default 7th order one, 

but sufficient precision for the short time steps used in a typical simulation. 

 

The correctness and accuracy of the implemented methods have been tested within GENM with a 

group of integration tests based on sample scenarios with orbits around the earth or in 

interplanetary flight, based on AMFIN and NAPEOS test cases. The end results of the orbit 

propagation are compared to the reference values and show excellent accuracy of the orbit 

propagation implemented in the simulator environment. To compare with an analytical reference, 

an integration test replicating a 5.15h LEO to GEO Hohmann Transfer based on ([8] page 147) 

has been added which shows an absolute error of 86 µm in the final orbit radius compared to the 

expected result of 42,160 km. 

 

The execution speed is slower than the old FORTRAN implementation, however it still uses 

significantly less time than other parts of the simulator, and is far from endangering the real-time 

operation of the simulators. 

 

Some of the PEM functionalities have no equivalent implementation inside PEM. This includes 

the calculation of the reflection of sunlight that reaches a solar panel due to the albedo of a celestial 

body, or the magnetic field of celestial bodies. In these cases the extensible architecture of GODOT 

has been exploited and local extension to GODOT have been written, making use of some of the 

GODOT functionality, such as the frames system, whereas the actual implementation of the 

physics models has been adopted from the original code, based on the Flatley-Moore Albedo 

Model, and the IGRF Magnetic Field Model. In the case of the magnetic field, a general 

MagneticField interface has been added to GODOT, with the implementation left to the user. 
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On the other side, the new GODOT-based implementation extends the PEM functionality: For 

example, it is now possible to simulate more than one spacecraft, or several small bodies 

simultaneously. Another new feature is the possibility to use high-accuracy 7th order Runge-Kutta 

integration for the simulation of longer time, e.g. for a time jump in the simulation. In the future 

more GODOT functionality can be easily added to the simulation environment by integrating them 

in ECSS-SMP Models. Possible candidates are different atmospheric models or the usage of 

relativistic calculations in the orbit propagation. 

 

In addition, due to its modular design, the GODOT functionality can be easily extended locally to 

account for special needs not present in the software, as already done for the magnetic field model 

or the Flatley-Moore Albedo Model. 

 

The next steps in the development will be the integration into a full mission simulator, the foreseen 

candidate is JUICESIM, the operational simulator for the Jupiter Icy Moons Explorer mission. 

 

4. GODOT for Space debris applications 

 

 
Figure 6. Space debris software high level design and data flow 

 

Telespazio Germany is also leading a project to replace the current FORTRAN-based toolkit 

CORAM ([9]) used by ESOC’s Space Debris Office by a new Python based library and command 

line interface (CLI), called sdocoralib. 

 

The new library uses GODOT for conjunction detection between spacecrafts and space debris, 

collision probability calculations and mitigation strategy planning. A simplified high level design 
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is shown in Figure 6. It makes use of all the GODOT layers core, model and cosmos. Most of the 

GODOT functionality is accessed in Python via GODOT’s Python interface godotpy. Some parts 

of GODOT are not exposed yet via its Python interface, notably the BlockDataInterpolator class 

and related classes. Although the godotpy interface is being expanded to cover external projects 

requests, these classes have been in the meantime made available to sdocorablib via local pybind11 

wrapper. The sdocoralib library itself is composed of four sub-packages: encounters, interp, prop 

and utilities. In addition to using sdocoralib as a library also a CLI has been made available, it has 

been implemented with click. 

 

The user of the library has to provide a configuration file specifying the initial conditions, i.e. the 

initial positions and velocities of the spacecraft (“target”) and space debris object (“chaser”), 

together with the covariance matrices, the starting time and duration of the simulation, pre-planned 

manoeuvres, together with uncertainties on them and which perturbations to consider. The values 

are passed on to GODOT’s universe layer, which creates a trajectory configuration as well as linear 

equations problem for the final states and covariances out of it. The user has to provide as well 

input files with the parameters for the physical models, such as spherical harmonics coefficients, 

and so on. 

 

Depending on what scenario the user wants to simulate, the prop package of the library is used for 

propagation of target and chaser, the interp package for interpolation between time steps, and the 

encounters package for the calculation of collision probabilities. The utilities package contains 

code for plotting and parsing input files. 

For the orbit propagation and state interpolation the library calls GODOT classes from the model 

and core layers via their godotpy interface or pybind11. For propagation, the Propagator class is 

used and for the calculation of the final covariances the Problem and Solver classes. The library 

makes as well use of other common Python packages, such as numpy or matplotlib. 

 

The output of the library consists of data that can be further used in the collision avoidance 

framework, as well as plots that can be inspected by the user. The outcome of a typical use case is 

illustrated in Figure 7. For a collision scenario the minimum required manoeuvre size is depicted 

in order to avoid this collision with a certain probability. The manoeuvre is in flight direction of 

the spacecraft, and the plot shows as a function of the time of the manoeuvre, the required impulse 

for a collision probability lower than 1 in a millions or 2 in a million. The user can then e.g. choose 

a manoeuvre time that offers a sufficiently low collision probability with the least fuel spending. 

In the depicted case an early manoeuvre would be optimal. 
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Figure 7. Sdocoralib usage example: Minimal required manoeuvre size for a collision 

probability of less than 1 in a million or 2 in a million as function of the manoeuvre time. 

 

The performance and accuracy of the library has been tested by comparing its results in default 

scenarios taken from CORAM test cases. During development these tests were integrated in a 

CI/CD pipeline as regression test in order to ensure the correctness of the software when adding 

new features. 

 

All of CORAM’s key features, i.e. collision probability calculation, manoeuvre planning and 

optimization have been implemented in the new library. It is foreseen to replace it in the 

operational environment in the future. For future developments it would be advantageous to have 

the full GODOT functionality exposed via its Python interface, to avoid having to manually 

implement the Python wrapping with pybind11. Work is ongoing in this direction, in coordination 

with the GODOT core development team. 

 

5. Conclusions 

 

Through three main topics, this paper provides a high level overview of GODOT and of some of 

its possible applications to different domains, with a focus on the key role played by Telespazio 

Germany in its development and early use cases. In particular, in the field of deep space operational 

orbit determination, a GODOT-based system has been developed and is being phased into 

operations for ESA deep space missions, providing a significant boost in flexibility, usability and 

extensibility, while keeping and in some areas improving the accuracy and robustness of the legacy 

software. For operational simulators, the SIMULUS infrastructure is being updated to replace the 

existing Fortran propagation tools with modern C++ libraries connecting to GODOT, removing 

some important limitations of the legacy implementation while at the same time drastically 

improving maintainability, with negligible impact on the performances. Finally, for space debris 
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analyses and operations, a new Python package is being developed, aimed at replacing existing 

operational tools for collision avoidance purposes, also improving usability and extensibility with 

the added advantage of extreme flexibility granted by the use of the GODOT Python interface and 

other Python common packages. These widely diverse and successful applicative scenarios, prove 

how GODOT’s new approach to shared orbit software infrastructure can represent a game changer 

for the European institutional, industrial and academic communities. 
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