
17th International Conference on Space Operations, Dubai, United Arab Emirates, 6 - 10 March 2023.
Copyright 2023 by Telespazio Germany GmbH and European Space Agency. Published by the Mohammed Bin Rashid Space Centre (MBRSC)

on behalf of SpaceOps, with permission and released to the MBRSC to publish in all forms.

1

SpaceOps-2023, ID # 655

DEVELOPMENT AND USAGE OF THE GODOT ASTRODYNAMICS SOFTWARE AT

TELESPAZIO GERMANY

Francesco Castellini(1), Stephan Kranz(2), Steffen Weber(3), Bernard Godard(4), Ruaraidh

Mackenzie(5), Paul Steele(6), Jan Siminski(7)

(1) Telespazio GmbH, located at ESA/ESOC, Robert-Bosch-Str. 5, Darmstadt, 64293, Germany,

francesco.castellini@telespazio.de
(2) Telespazio GmbH, Europaplatz 5, Darmstadt, 64293, Germany, stephan.kranz@telespazio.de
(3) Telespazio GmbH, Europaplatz 5, Darmstadt, 64293, Germany, steffen.weber@telespazio.de
 (4) Telespazio GmbH, located at ESA/ESOC, Robert-Bosch-Str. 5, Darmstadt, 64293, Germany,

bernard.godard@telespazio.de
(5) ESA/ESOC, Robert-Bosch-Str. 5, Darmstadt, 64293, Germany, ruaraidh.mackenzie@esa.int

(6) ESA/ESOC, Robert-Bosch-Str. 5, Darmstadt, 64293, Germany, paul.steele@esa.int
(7) ESA/ESOC, Robert-Bosch-Str. 5, Darmstadt, 64293, Germany, jan.siminski@esa.int

Keywords: Orbit Determination, Deep Space Missions, Flight Dynamics Operations, GODOT.

1. Introduction

For organisational and historical reasons, astrodynamics tasks within the European Space Agency

(ESA) and European industry overall have been performed in the past decades with a variety of

software libraries and tools. In particular, orbit determination and trajectory optimization for Flight

Dynamics operations at the European Space Operations Centre (ESOC) have been performed in

the past 20 years with software originally developed in the 90s, the NAvigation Package for Earth

Orbiting Satellites (NAPEOS, [1]) for Earth orbiters and the Advanced Modular Facility for

Interplanetary Navigation (AMFIN, [2]) for deep space missions. In parallel, other players such as

ESOC’s mission analysis, navigation and space debris offices have relied on separate in-house

tools, while the European industry has developed different solutions.

In order to modernise the software base, improving its usability, extensibility and maintainability,

and to homogenize the astrodynamics tasks across different sections, ESA/ESOC started a large

development effort in 2016 to design and implement a common successor for all these software.

Such effort has been conceived from the start with an ambitiously wide scope, aiming at providing

a modular, easily extensible, common library to form the core of all orbit related tasks, primarily

within the ESA/ESOC Flight Dynamics (FD) division but also for a larger community, including

other ESA offices and the overall European industry and academia. The result of this effort is

GODOT, the Generic Orbit Determination and Optimisation Toolkit ([3], [4]), which is available

under ESA Community License on space-codev ([5]).

GODOT is written in C++ with both C++ and Python user interfaces, and is available under an

ESA Community License. GODOT is not a complete end-to-end application, but rather a set of

libraries for performing generic orbit related computations for estimation, optimisation and orbital

analysis, practically for any space mission. It was designed with operational orbit determination

and trajectory optimisation as well as non-operational mission analysis as main applications.

mailto:francesco.castellini@telespazio.de
mailto:stephan.kranz@telespazio.de
mailto:steffen.weber@telespazio.de
mailto:bernard.godard@telespazio.de
mailto:ruaraidh.mackenzie@esa.int
mailto:paul.steele@esa.int
mailto:jan.siminski@esa.int

17th International Conference on Space Operations, Dubai, United Arab Emirates, 6 - 10 March 2023.
Copyright 2023 by Telespazio Germany GmbH and European Space Agency. Published by the Mohammed Bin Rashid Space Centre (MBRSC)

on behalf of SpaceOps, with permission and released to the MBRSC to publish in all forms.

2

However, it can be easily adapted for other astrodynamics scenarios and can even be used for

attitude propagation and other attitude related tasks. As a consequence of its design as a toolkit, a

substantial amount of work is required on top of GODOT to derive user libraries and applications.

Within this frame, Telespazio-Germany (TPZG) has been a key player from the beginning,

participating with its staff in the GODOT core development as well as in the design and

implementation of the operational layer for Orbit Determination (OD) of deep space missions.

TPZG is also leading external projects for the exploitation of GODOT for the ESA Space Debris

office and for the conversion of the ESOC SIMULUS generic simulation infrastructure to replace

with GODOT the existing position and environment model (PEM).

This paper aims to summarise the contributions by Telespazio Germany to the success of GODOT

and its usage, by describing some of the development and utilisation activities performed by the

company’s staff for both ESA-internal applications and external projects.

2. GODOT for deep space orbit determination applications

Working together with ESA staff and contractors in the ESOC FD division, Telespazio Germany’s

staff has largely contributed to the development of the libraries which make up GODOT, as well

as to the design, implementation, testing and operational validation of the derived deep space OD

system.

The OD system for deep space missions shares different software components with other teams

both within and outside of ESOC’s FD. Its high-level software design is summarised in Figure 1,

where all the main software components – both in C++ and Python – and data repositories are

represented, together with their interdependencies.

17th International Conference on Space Operations, Dubai, United Arab Emirates, 6 - 10 March 2023.
Copyright 2023 by Telespazio Germany GmbH and European Space Agency. Published by the Mohammed Bin Rashid Space Centre (MBRSC)

on behalf of SpaceOps, with permission and released to the MBRSC to publish in all forms.

3

Figure 1. Deep space OD software high level design, covering both C++ and Python parts

The overall deep space OD software has been designed based on a few key drivers:

• Sharing approach: software and data should be shared where possible, i.e. avoiding

overcomplicating the development/maintenance for this sole purpose, with the other FD

subsystems (e.g. manoeuvre optimization, commands generation) for deep space missions

and with counterparts for Earth orbiting missions. Moreover, GODOT is shared with the

overall GODOT community, i.e. control over the content and design of its libraries is not

fully under FD control.

• Operational constraints: operational software should be written in compiled language,

scripting languages are only allowed for wrappers, input/output processing, analysis tools,

etc. GODOT’s main Python interface godotpy, written in Pybind and giving access to most

classes and their interfaces, cannot therefore be used for operational nor analysis purposes.

• Modularity and interfaces: the software should be easily extensible and maintainable,

hence based on object oriented programming paradigm and modern design methods. The

most basic functionalities should nevertheless also be available with the legacy functional

programming approach, in particular as interface for other FD subsystems and for enabling

an interactive analysis environment in support of real-time operations.

• Generality, flexibility, and usability: The software should be generic, i.e. it should be

possible to use the same software for all missions by simply adapting the configuration in

the most simple cases, or by extending its functionalities and/or developing ad-hoc

scripting tools if needed. Particular emphasis should be put on operational flexibility and

usability: it should be possible to tackle very different scenarios with the same, modular

applications; also, any orbit determination expert should be able to easily understand and

perform simple changes to the configuration, even with limited experience on the system.

• Accuracy and performances: the software should allow to achieve the “same” results as

with AMFIN legacy software ([2]), within the accuracy required for OD operations. Also,

the software should have good performances, to the point of allowing OD operations within

“reasonable” computational times, although some performance penalty is accepted in front

of a much higher functional flexibility with respect to the legacy AMFIN software.

Due to these drivers, the design has naturally evolved to include the features in Figure 1. The main

operational software is written in C++ and is split in three main layers: 1) the GODOT libraries;

2) ODLIB, another pure library layer shared with the OD system for Earth orbiters and expanding

GODOT functionalities for OD tasks; and 3) ODAPP, developed on top of GODOT and ODLIB

and made mostly of user applications for all operational tasks in support of deep space OD. To

simplify user utilisation and automate recurring tasks, a wide suite of Python functions and scripts

is also implemented in ODAPP, covering applications wrapping, inputs/outputs (I/O) processing,

visualisation tools, etc. For completeness, a top layer similar to ODAPP in terms of functionalities

was also developed, tailored for support to ESA Earth orbiting missions (e.g. higher focus on

automation, less on models accuracy). TPZG was not involved in its development, and information

can be found in a separate paper ([6]).

Since the full GODOT Python interface cannot be used for operations and a simpler programming

interface based only on fundamental types must be available as interface to other FD subsystems,

a separate C-style interface for GODOT is included in the software design. This is called

GODOTC, is shared with other FD subsystems, and contains basic functions for time and frame

17th International Conference on Space Operations, Dubai, United Arab Emirates, 6 - 10 March 2023.
Copyright 2023 by Telespazio Germany GmbH and European Space Agency. Published by the Mohammed Bin Rashid Space Centre (MBRSC)

on behalf of SpaceOps, with permission and released to the MBRSC to publish in all forms.

4

conversions, orbit and attitude data access, etc. To provide a connection to the Python world, a

thin layer interface using Python ctypes for a 1-to-1 representation of the C interface is also

included in GODOTC, and constitutes the core of an interactive Python analysis environment for

deep space OD scenarios.

To complete the OD system, operational data accounts are also represented in Figure 1. For FD

operations, a large set of data common to all Earth orbiting and deep space missions is maintained

in a single data account, orbdata. This contains both static data, such as planetary ephemeris or

gravity fields, and dynamically updated data such as Earth Orientation Parameters (EOP) or solar

flux files. Finally, each mission requires dedicated data accounts to store the setup, e.g.

configuration files, environment variables, etc., as well as folders for input data, processing logs

and outputs.

Based on the presented software design, the operational workflow and processes for generic OD

support for any deep space mission are summarised in Figure 2, together with all the main input

and output data flowing within the internal processes and from/to external parties. Note that the

diagram is simplified, i.e. only the main processes and data flows are shown, in order to provide a

clearer understanding of the most typical scenarios. The processes in the figure are representative

of the three major steps in OD support (pre-processing, OD and orbital products) plus a series of

auxiliary processes for automation, post-processing and visualisation of the results.

Figure 2. Generic operational workflow, processes and inputs/outputs in the OD system.

Pre-processing is performed with a single application named prepro, which is based on a modular

user interface which executes an arbitrary list of commands, which can be sequentially combined

17th International Conference on Space Operations, Dubai, United Arab Emirates, 6 - 10 March 2023.
Copyright 2023 by Telespazio Germany GmbH and European Space Agency. Published by the Mohammed Bin Rashid Space Centre (MBRSC)

on behalf of SpaceOps, with permission and released to the MBRSC to publish in all forms.

5

via configuration file to specialise the pre-processing for each mission. For instance, different

tracking data types can be processed with different prepro commands and combined into one or

more databases. For example, radiometric data or angular data can be imported in various formats

specific to different types of ground station modems or antenna controllers in use across ESA

stations, and both can also be processed from the standard Tracking Data Format (TDM) used for

inter-agency exchanges. Similarly, station calibrations or media calibrations (e.g. meteo or GNSS

corrections) can be processed and combined. The outputs of such process are one or more

observations, calibrations, and media corrections databases (obsDB, calDB and mediaDB), which

all have a common JSON format but a content which depends on each specific data type. Note that

exactly the same process is followed for non-radiometric observations, such as antenna angles,

ground optical observations, GNSS state or even on-board sensors data such as optical imaging or

altimeters.

The next step is the OD process, which is performed with the odCmdTool application. Similar to

prepro, also odCmdTool is based on a set of commands which perform specific tasks and hence

allow assembling the OD process (or multiple processes) in the way that is most suited for each

mission. The odCmdTool commands range from very simple tasks such as associating a specific

object to the observations for modelling to gradually more complex ones such as trajectory

propagation, observables modelling, OD iterations, mapping of given expressions to one or more

epochs, etc. A typical operational procedure for most deep space missions would therefore

combine these building blocks to run a pass-through for data validation, a full orbit determination,

mapping to specific epochs (e.g. for swing-by targeting), generation and merging of orbit file

including prediction in the future, and a final passthrough for OD solution verification. These steps

could be carried out in a single or in multiple runs depending on operational decisions, configuring

odCmdTool accordingly.

The final step is the generation of orbital products from an orbit file, which depending on the cases

can be the orbit as generated by the OD or an external orbit from the MAN subsystem or other

sources (e.g. for third party missions support). Due to the large number of possible products, a

suite of different applications is available – each dedicated to the generation of a specific type of

output. On top of these main three processes described, a wide range of tools – mostly written in

Python exploiting the GODOTC interface and other common Python libraries – is implemented in

ODAPP. Providing a detailed description of all these processes is out of the scope of this paper,

but the most relevant ones are shown in Figure 2. Particularly worth mentioning is the residuals

editing process using resEditor, a Python tool connected to I/O processing scripts, which allow the

user to visualise the residuals of any type of observation, together with the associated statistics and

observation properties. Via the editor, observations deemed to be outliers can be flagged or

different weights can be applied when needed, generating a prepro configuration file, to be used

to automatically update via prepro the obsDB files (feedback loop in Figure 2). Other auxiliary

tools are available at all three steps to summarise the results for user inspection, for instance via

plots of the tracking data time span or of raw troposphere corrections and fitted polynomials,

summary tables for the OD solution, plotting of delta-v or range bias estimates, continuous

accelerations plots, B-plane targeting plots, station or quasar visibility plots, events or time series

summary tables, etc.

The input and output external interfaces, exchanged outside of the OD system, are represented in

dark blue and dark green in Figure 2. The main inputs are all types of observation and correction

17th International Conference on Space Operations, Dubai, United Arab Emirates, 6 - 10 March 2023.
Copyright 2023 by Telespazio Germany GmbH and European Space Agency. Published by the Mohammed Bin Rashid Space Centre (MBRSC)

on behalf of SpaceOps, with permission and released to the MBRSC to publish in all forms.

6

data from stations or other sensors (range, Doppler, Differential One-way Range or DOR, angles,

meteo and GNSS corrections, optical measurements, etc.), “context” files generated by the

command generation subsystem and representing the predicted spacecraft dynamics (attitude,

articulation angles, etc.) and “history” files generated by ATT and representing reconstructions

from telemetry or ground models (Solar Radiation Pressure SRP, thruster pulses). The main

outputs are instead all orbital products to be delivered for various purposes, such as station

predictions, one-way light-time, orbital events or time series files, and some additional outputs for

use by other FD subsystems. Among the latter, particularly relevant are the prepro databases

generated by prepro, and residuals and OD summary files generated by odCmdTool. These files,

all in JSON format and with content defined by associated schema files which act both as

validation and as documentation, are the main interface to an independent Test & Validation Orbit

team (TVO), which is in charge of checking OD solutions and products before they can be sent

externally.

TPZG’s staff has provided major contributions at all three levels. At the bottom level, GODOT

builds upon several third party libraries such as calceph for ephemeris access or eigen for linear

algebra, and is composed of three main layers: core, a collection of astrodynamics utilities to build

the higher-level software components; model, a collection of libraries which implement interfaces

to allow a generic modelling scheme in the subsequent layers and applications; and cosmos, a

library which provides high level functionalities for common orbit problems. Many of the core,

model and cosmos libraries were mostly developed by TPZG staff, for instance the frames and

gravity libraries which allow the generic definition of points, axes and gravitational trees. And all

others saw major participation of TPZG staff, for instance: core’s tempo (time representation

library), autodif (automatic differentiation library), and orient (bodies orientation library); model’s

prop (propagator library); and cosmos’s universe, which provides a single user access point to a

wide array of functionality, and problem which allows to define equations and parameter settings

for an OD. TPZG staff has also designed and implemented the GODOTC interface and its 1-to-1

Python ctypes interface, exposing some selected functionalities of GODOT.

Both the universe and problem libraries can be conveniently expanded using a plugin system,

which was exploited at the second level in ODLIB, which expands the GODOT functionalities

specifically for orbit determination, for all those aspects that are common between Earth orbiting

and deep space missions. ODLIB is constituted of a util library, which includes generic helper

classes and functions such as for XML and JSON processing, and four main components: plugins,

prepro, equations, and products. The plugins library is a container for all extensions to the GODOT

basic constructs which are useful for OD applications, such as universe and problem. The prepro

library includes all classes and methods which are required to read, modify, or write any type of

DataSets which constitute the obsDB, mediaDB and calDB databases shown in Figure 2. Each

DataSet can store one type of “observation”, a term which is more widely used to also represent

station calibrations, media corrections, etc. In order to better define the DataSet concept, the

inheritance diagram of its base and derived classes is shown in Figure 3. Similarly, Figure 4 shows

the inheritance diagram of the EquationGenerator classes in the ODLIB equations library, which

expands the list of available equations defined within GODOT’s orbit determination Problem, to

cover the equation generators connected to ODLIB’s prepro. Finally, the products library includes

all classes and methods which are required to generate, read, or write data for the orbital products,

of which the most common are shown in the output interfaces of Figure 2.

17th International Conference on Space Operations, Dubai, United Arab Emirates, 6 - 10 March 2023.
Copyright 2023 by Telespazio Germany GmbH and European Space Agency. Published by the Mohammed Bin Rashid Space Centre (MBRSC)

on behalf of SpaceOps, with permission and released to the MBRSC to publish in all forms.

7

Figure 3. Inheritance diagram for ODLIB’s DataSet classes.

17th International Conference on Space Operations, Dubai, United Arab Emirates, 6 - 10 March 2023.
Copyright 2023 by Telespazio Germany GmbH and European Space Agency. Published by the Mohammed Bin Rashid Space Centre (MBRSC)

on behalf of SpaceOps, with permission and released to the MBRSC to publish in all forms.

8

Figure 4. Inheritance diagram for ODLIB’s EquationGenerator classes.

At the highest level, ODAPP is composed of a C++ and a Python section. The C++ part is

constituted of main applications and related libraries, targeting specific operational scenarios for

supporting any kind of deep space mission OD scenario. It relies heavily on the functionalities

provided by GODOT and ODLIB, where most of the complexity is implemented, and is therefore

a relatively simple layer. In addition to a small util library and few additional plugins (e.g. quasars

database dedicated to deep space DDOR measurements), ODAPP/C++ contains the applications

for the three main processes described above: prepro, odCmdTool and products. The Python part

consists instead of several Python modules and a suite of Python scripts for a variety of purposes,

relying on the GODOTC one-to-one Python interface and on other classical Python packages such

as numpy, matplotlib, json, etc. The modules contain generic, mathematical and input/output

processing utilities, as well as a general-purpose scripting framework developed for running all

the applications in the OD system. This latter functionality has the purpose of defining and

imposing a consistent approach for running any GODOT-based application for deep space OD,

with an identical user interface and avoiding code duplication. On top of these modules and of the

GODOTC interface, the ODAPP Python scripts are divided in three categories: wrappers of the

C++ applications using the framework described above, ioprocessing scripts to generate inputs or

post-process outputs, with the purpose of automating the generation of input files or better

visualising output data, and stand-alone tools used to support operations (e.g. plot a trajectory and

its characteristic parameters or to compare two different orbits).

Development of the deep space OD system is almost complete, at least for all aspects which allow

supporting currently flying ESA deep space missions and the upcoming launches of JUICE,

Euclid, and Hera. TPZG staff has been heavily involved in the design, implementation and testing

of the ODLIB and ODAPP layers, on top of GODOT itself, and is now leading the operational

validation of the overall system. Although GODOT, ODLIB and ODAPP make extensive use of

unit testing and the accuracy of GODOT building blocks has been proven via cross-comparison

tests against AMFIN and NAPEOS, additional validation activities were set up. Among others, the

most important were the comparison of dynamics and observables modelling against independent

TVO software for a JUICE escape trajectory and the parallel OD operations for Solar Orbiter’s

third Venus swing-by navigation campaign. A detailed description of these activities is beyond the

scope of the current paper, but a more detailed overview can be found in ([7]). Following these

activities, confidence in the new ESOC deep space OD system has reached a level sufficient for

operational deployment. At the beginning of December 2022, the new GODOT-based system

replaced the legacy AMFIN-based system for Solar Orbiter’s prime OD operations, and it is

expected to be used in 2023 for the launches of Juice in April and Euclid in July.

17th International Conference on Space Operations, Dubai, United Arab Emirates, 6 - 10 March 2023.
Copyright 2023 by Telespazio Germany GmbH and European Space Agency. Published by the Mohammed Bin Rashid Space Centre (MBRSC)

on behalf of SpaceOps, with permission and released to the MBRSC to publish in all forms.

9

3. GODOT for Simulus generic simulation infrastructure

Figure 5. Integration of GODOT inside SIMULUS GENM

Within the ESOC operational simulator infrastructure SIMULUS, the Position and Environment

Model (PEM), as part of the Generic Models (GENM) is responsible for the propagation of the

orbit of simulated spacecrafts taking into account its physical environment and the forces acting

on it. It is based on a FORTRAN core with a C/C++ layer around it, allowing the integration into

the rest of the SIMULUS code written in C++. While providing good performance and high

execution speed, it has some limitations due to its old age and its architecture: For example,

variables are stored in a common block memory which limits its use to the simulation of a single

spacecraft, and the usage of FORTRAN makes the codebase harder to maintain and extend in

comparison to more modern programming languages.

For these reasons it has been decided to replace the current PEM during the development of

SIMULUS Next Generation ([10]) with a new environment modelling and orbit propagation

system based on GODOT. Work has been ongoing at Telespazio Germany on this new system for

the past year, and it is now nearing its completion.

The simplified summary of the overall architecture is shown in Figure 5. The two innermost

GODOT layers core and model are used, while no usage is made of the universe layer. The new

GENM component is split into the two sub-components ATOM and ECOS. The ATOM model is

responsible for the propagation of a rigid body – a spacecraft or small body – through space, based

on the gravitational forces acting on it as well as perturbation due to 3rd bodies, atmospheric drag,

solar radiation pressure, and so on. Any number of ATOM models can be instantiated. The ECOS

17th International Conference on Space Operations, Dubai, United Arab Emirates, 6 - 10 March 2023.
Copyright 2023 by Telespazio Germany GmbH and European Space Agency. Published by the Mohammed Bin Rashid Space Centre (MBRSC)

on behalf of SpaceOps, with permission and released to the MBRSC to publish in all forms.

10

simulation service provides the physical environment, i.e. the simulation of celestial bodies and

their gravity fields, atmospheres, solar radiation, and so on.

Both ATOM and ECOS consist of several ECSS-SMP components that can be configured by the

user via setting of field values. The components contain instances of corresponding GODOT

classes that perform the calculations. They are set up and configured with the values from the

components fields. The user also has to provide input files with physical parameters of the models.

These files are passed on to the GODOT classes.

The orbit propagation is performed in small time steps during the running simulation, a typical

update cycle is 250 ms. For each time step, the GODOT Propagator class is initialised at the current

epoch time, the propagation performed and the position and velocity field values of the GENM

ATOM models are updated. The updated values can then be accessed by other parts of the

simulator of by the user via Properties.

This discrete time step simulation is not the typical use-case for GODOT, which initially has been

developed for flight dynamics applications and thus is capable of performing high-precision

calculations of long orbits in one step using sophisticated numerical integration methods, but has

not been optimized to do many short propagations with a high frequency.

To improve execution speed, a simplified 4th order Runge-Kutta integrator has been added to

GODOT for the simulators use case, with a much faster execution than the default 7th order one,

but sufficient precision for the short time steps used in a typical simulation.

The correctness and accuracy of the implemented methods have been tested within GENM with a

group of integration tests based on sample scenarios with orbits around the earth or in

interplanetary flight, based on AMFIN and NAPEOS test cases. The end results of the orbit

propagation are compared to the reference values and show excellent accuracy of the orbit

propagation implemented in the simulator environment. To compare with an analytical reference,

an integration test replicating a 5.15h LEO to GEO Hohmann Transfer based on ([8] page 147)

has been added which shows an absolute error of 86 µm in the final orbit radius compared to the

expected result of 42,160 km.

The execution speed is slower than the old FORTRAN implementation, however it still uses

significantly less time than other parts of the simulator, and is far from endangering the real-time

operation of the simulators.

Some of the PEM functionalities have no equivalent implementation inside PEM. This includes

the calculation of the reflection of sunlight that reaches a solar panel due to the albedo of a celestial

body, or the magnetic field of celestial bodies. In these cases the extensible architecture of GODOT

has been exploited and local extension to GODOT have been written, making use of some of the

GODOT functionality, such as the frames system, whereas the actual implementation of the

physics models has been adopted from the original code, based on the Flatley-Moore Albedo

Model, and the IGRF Magnetic Field Model. In the case of the magnetic field, a general

MagneticField interface has been added to GODOT, with the implementation left to the user.

17th International Conference on Space Operations, Dubai, United Arab Emirates, 6 - 10 March 2023.
Copyright 2023 by Telespazio Germany GmbH and European Space Agency. Published by the Mohammed Bin Rashid Space Centre (MBRSC)

on behalf of SpaceOps, with permission and released to the MBRSC to publish in all forms.

11

On the other side, the new GODOT-based implementation extends the PEM functionality: For

example, it is now possible to simulate more than one spacecraft, or several small bodies

simultaneously. Another new feature is the possibility to use high-accuracy 7th order Runge-Kutta

integration for the simulation of longer time, e.g. for a time jump in the simulation. In the future

more GODOT functionality can be easily added to the simulation environment by integrating them

in ECSS-SMP Models. Possible candidates are different atmospheric models or the usage of

relativistic calculations in the orbit propagation.

In addition, due to its modular design, the GODOT functionality can be easily extended locally to

account for special needs not present in the software, as already done for the magnetic field model

or the Flatley-Moore Albedo Model.

The next steps in the development will be the integration into a full mission simulator, the foreseen

candidate is JUICESIM, the operational simulator for the Jupiter Icy Moons Explorer mission.

4. GODOT for Space debris applications

Figure 6. Space debris software high level design and data flow

Telespazio Germany is also leading a project to replace the current FORTRAN-based toolkit

CORAM ([9]) used by ESOC’s Space Debris Office by a new Python based library and command

line interface (CLI), called sdocoralib.

The new library uses GODOT for conjunction detection between spacecrafts and space debris,

collision probability calculations and mitigation strategy planning. A simplified high level design

17th International Conference on Space Operations, Dubai, United Arab Emirates, 6 - 10 March 2023.
Copyright 2023 by Telespazio Germany GmbH and European Space Agency. Published by the Mohammed Bin Rashid Space Centre (MBRSC)

on behalf of SpaceOps, with permission and released to the MBRSC to publish in all forms.

12

is shown in Figure 6. It makes use of all the GODOT layers core, model and cosmos. Most of the

GODOT functionality is accessed in Python via GODOT’s Python interface godotpy. Some parts

of GODOT are not exposed yet via its Python interface, notably the BlockDataInterpolator class

and related classes. Although the godotpy interface is being expanded to cover external projects

requests, these classes have been in the meantime made available to sdocorablib via local pybind11

wrapper. The sdocoralib library itself is composed of four sub-packages: encounters, interp, prop

and utilities. In addition to using sdocoralib as a library also a CLI has been made available, it has

been implemented with click.

The user of the library has to provide a configuration file specifying the initial conditions, i.e. the

initial positions and velocities of the spacecraft (“target”) and space debris object (“chaser”),

together with the covariance matrices, the starting time and duration of the simulation, pre-planned

manoeuvres, together with uncertainties on them and which perturbations to consider. The values

are passed on to GODOT’s universe layer, which creates a trajectory configuration as well as linear

equations problem for the final states and covariances out of it. The user has to provide as well

input files with the parameters for the physical models, such as spherical harmonics coefficients,

and so on.

Depending on what scenario the user wants to simulate, the prop package of the library is used for

propagation of target and chaser, the interp package for interpolation between time steps, and the

encounters package for the calculation of collision probabilities. The utilities package contains

code for plotting and parsing input files.

For the orbit propagation and state interpolation the library calls GODOT classes from the model

and core layers via their godotpy interface or pybind11. For propagation, the Propagator class is

used and for the calculation of the final covariances the Problem and Solver classes. The library

makes as well use of other common Python packages, such as numpy or matplotlib.

The output of the library consists of data that can be further used in the collision avoidance

framework, as well as plots that can be inspected by the user. The outcome of a typical use case is

illustrated in Figure 7. For a collision scenario the minimum required manoeuvre size is depicted

in order to avoid this collision with a certain probability. The manoeuvre is in flight direction of

the spacecraft, and the plot shows as a function of the time of the manoeuvre, the required impulse

for a collision probability lower than 1 in a millions or 2 in a million. The user can then e.g. choose

a manoeuvre time that offers a sufficiently low collision probability with the least fuel spending.

In the depicted case an early manoeuvre would be optimal.

17th International Conference on Space Operations, Dubai, United Arab Emirates, 6 - 10 March 2023.
Copyright 2023 by Telespazio Germany GmbH and European Space Agency. Published by the Mohammed Bin Rashid Space Centre (MBRSC)

on behalf of SpaceOps, with permission and released to the MBRSC to publish in all forms.

13

Figure 7. Sdocoralib usage example: Minimal required manoeuvre size for a collision

probability of less than 1 in a million or 2 in a million as function of the manoeuvre time.

The performance and accuracy of the library has been tested by comparing its results in default

scenarios taken from CORAM test cases. During development these tests were integrated in a

CI/CD pipeline as regression test in order to ensure the correctness of the software when adding

new features.

All of CORAM’s key features, i.e. collision probability calculation, manoeuvre planning and

optimization have been implemented in the new library. It is foreseen to replace it in the

operational environment in the future. For future developments it would be advantageous to have

the full GODOT functionality exposed via its Python interface, to avoid having to manually

implement the Python wrapping with pybind11. Work is ongoing in this direction, in coordination

with the GODOT core development team.

5. Conclusions

Through three main topics, this paper provides a high level overview of GODOT and of some of

its possible applications to different domains, with a focus on the key role played by Telespazio

Germany in its development and early use cases. In particular, in the field of deep space operational

orbit determination, a GODOT-based system has been developed and is being phased into

operations for ESA deep space missions, providing a significant boost in flexibility, usability and

extensibility, while keeping and in some areas improving the accuracy and robustness of the legacy

software. For operational simulators, the SIMULUS infrastructure is being updated to replace the

existing Fortran propagation tools with modern C++ libraries connecting to GODOT, removing

some important limitations of the legacy implementation while at the same time drastically

improving maintainability, with negligible impact on the performances. Finally, for space debris

17th International Conference on Space Operations, Dubai, United Arab Emirates, 6 - 10 March 2023.
Copyright 2023 by Telespazio Germany GmbH and European Space Agency. Published by the Mohammed Bin Rashid Space Centre (MBRSC)

on behalf of SpaceOps, with permission and released to the MBRSC to publish in all forms.

14

analyses and operations, a new Python package is being developed, aimed at replacing existing

operational tools for collision avoidance purposes, also improving usability and extensibility with

the added advantage of extreme flexibility granted by the use of the GODOT Python interface and

other Python common packages. These widely diverse and successful applicative scenarios, prove

how GODOT’s new approach to shared orbit software infrastructure can represent a game changer

for the European institutional, industrial and academic communities.

Acknowledgments

The authors would like to acknowledge all colleagues at ESA/ESOC in both the GODOT core

development team and the deep space missions Orbit Determination team, with whom a significant

part of the work presented in this paper was carried out.

Furthermore, the authors would like to acknowledge the ESA/ESOC Space Debris Office for

funding und supporting the “CAP – State and Covariance Propagation and Interpolation” project

and IMS Space Consultancy GmbH for the smooth and fruitful collaboration.

Finally, the authors would like to acknowledge ESA/ESOC OPG-GD for funding und supporting

the on-going development project of the SIMULUS Next Generation (SIMULUS-NG)

infrastructure.

References

[1] Garcia-Matamoros M. A., Kuijper D. and Righetti P.L., "NAPEOS: ESA/ESOC navigation

package for earth observation satellites", Proceedings of the European Workshop on Flight

Dynamics Facilities, Darmstadt, Germany, 2003.

[2] Budnik, F., Morley, T. and Mackenzie, R.A. “ESOC’s System for Interplanetary Orbit

Determination”, 18th International Symposium on Space Flight Dynamics, Munich, Germany,

October 2004.

[3] Mackenzie, R.A. “GODOT Flight Dynamics Infrastructure Software for operations and

analysis”, 1st European Workshop on Space Flight Dynamics Services, Systems and

Operations, ESA-ESOC, Darmstadt, Germany, September 2021.

[4] https://godot.io.esa.int, https://godot.io.esa.int/docs, https://godot.io.esa.int/godotpy

[5] https://gitlab.space-codev.org

[6] Ramos Bosch P., Vasconcelos A., Kuchynka P., and Sanchez J., “The New ESOC Flight

Dynamics Operational Software for Earth Orbiting satellites (GENEOS)”, 28th International

Symposium on Space Flight Dynamics, Beijing, China, August 2022.

[7] Castellini F., Godard B., Dei Tos D., Mackenzie R., and Budnik F., “ESOC’s New Orbit

Determination System for Deep Space Mission Operations”, 28th International Symposium on

Space Flight Dynamics, Beijing, China, August 2022.

[8] Wertz, J. R, Larson W. J., “Space Mission Analysis and Design, third edition”, Microcosm

Press.

[9] Cobo, J. et al., “CORAM: ESA’s Collision Avoidance Risk Assessment and Avoidance

Manoeuvres Computation Tool”, 2014

[10] https://www.esa.int/Enabling_Support/Operations/Investing_in_space_on_Earth

https://godot.io.esa.int/
https://godot.io.esa.int/docs
https://godot.io.esa.int/godotpy
https://gitlab.space-codev.org/
https://www.esa.int/Enabling_Support/Operations/Investing_in_space_on_Earth

