Institut Laue-Langevin

Neutrons for society

Neutron based measurement techniques: unique tools in the non-destructive toolbox

30/11/2021 CNES: journée «CND - Détection d'endommagement et suivi en fabrication »

Contact us: <u>industry@ill.eu</u> <u>www.ill.eu/industry</u>

caroline.boudou@ill.eu Industry Contact Officer

Institut Laue-Langevin (ILL)

- 1 site (Grenoble)
- Managed by FR, DE, GB
- 11 member states
- Budget 2020: 102 MEUR
- 543 employees
- Since 1967

Source of neutrons to investigate materials, component and devices under

varying conditions.

40% Societal Challenges Research

60% Fundamental Research

Magnetism, Biology and Health, Material and engineering, Chemistry, Crystallography, Soft matter Particle and nuclear Physics + production of radio-isotopes

Neutron analytical techniques: contributing to material science and engineering challenges

FOR SOCIETY

INSTITUT LAUE LANGEVIN

Neutron based techniques: advanced tools in the NDT toolbox

 \Rightarrow Develop, improve and benchmark on-line/on-site NDI techniques \Rightarrow New materials, fabrication routes or post-treatment processes

1	Ν	S	Т	1	Т	U	Т	L	А	U	Ε
		~				\sim		- Anna		~	_

	DIFFRACTION	STRESS SCANNING	IMAGING	SANS	REFLECTOMETRY	SPECTROSCOPY		
		NON DESTRUCTIVE	RADIOGRAPHY TOMOGRAPHY	SMALL ANGLE NEUTRON SCATTERING				
	Position of atoms, crystal structure, magnetic phases, textures	Manufacturing processes, 3D printing, machining, welding, hardening, surface treatments, ageing	Visualisation of fluid, adhesive, polymer within metallic objects. Possible combination with x-rays	Structure of fluids, aggregates, vectorisation, nanostructures in solids, ageing of metals	Surface, interface, composition, thickness, roughness	Movements of atoms, dynamic analysis of molecules		
Range of Investigation features	Atomic scale	From 60µm below surface up to several cm in metals	~ 10 µm to 1 mm	~1 nm to 1 µm	~ 1 nm to 600 nm in layers	Atomic scale		
Typical size of sample	Few mm ³	From tens of mm ³ to 850kg	From cm to ~1m	Few mm ³	Few mm ³	Few mm ³		
Industrial Sectors	* 1= 7= #	◎ <i>7. \$</i> .≯ (h b	メ fa え La 共 タ	* 1	● ▲ ◆ ↓			

Neutron diffraction

- Stress determination

profiles and maps obtained after sevreral cm of metal

- (powder and single crystal) diffraction organisation of atoms and in-situ evolution

INSTITUT LAUE LANGEVIN

Stress Analyser at the ILL: SALSA

HIGH RESOLUTION Surfaces & Interfaces

40 microns

INSTITUT LAUF LANGEVIN

Stress Analyser at the ILL: SALSA

Sample positioning stage (hexapod): can handle 750 kg samples with positioning accuracy of about 5 μ m.

Non-destructive stress scanning for the determination of stress in real-size components

=> Residual stress mapping allows deep investigations on: manufacturing processes, 3D printing, machining, welded areas, hardening processes, ageing, surface treatments.

- Features:
 - Gauge volume : ~ mm³
 - Scan can start from about 60 µm below the surface up t several cm in the piece examined
 - Investigation possible after about:
 - 6 cm of steel,
 - . 30 cm of Al,
 - 7 cm of Ti
 - 4 cm of Ni
 - . 6 cm of Cu
 - In situ studies are possible (furnace, cryostat, test rig)
 - Typical uncertainty: 50 MPa

ISO/TS

TECHNICAL SPECIFICATION

Non-destructive testing — Standard test method for determining residual stresses y neutron diffraction
ssais our destructifs - Méthode normalisée de détermination des

Neutron diffraction: stress determination

- Investigation of residual stress in the thickness (4 cm) of the welded region (FSW)
- SKB, Sweden
- a 850 kg piece made of copper

SINE2020 project receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654050. N NEUTRON SOURCE

Stress determination on FSW at SALSA

- Near surface and through thickness stress mapping
- non-destructive
- full stress tensor (absolute values confidential)

FOR SOCIETY

OHB OMTAEROSPACE

Stress scanning @SALSA: additive manufacturing

- IREPA & University Cranfield: Ti64 CLAD versus WAAM

- ✓ Stress is balanced in the system sample + base plate
- ✓ Access to joint region: deep stress gradient
- ✓ CLAD has lower residual stresses than WAAM

- THALES & Renishaw: Aluminium SLM

- ✓ High strain gradient: -100 to 400 µ€
- ✓ Non-symmetric gradient:
 - · Influence of laser scanning strategy more than geometry
 - Principal directions?

→ Stress gradient not related to geometry but to printing strategy!

Microstrain map

-40 -30 -20 -10 0 10 20 30 40

100

80

60

40

20

→ Benchmark of simulations

FOR SOCIETY

Additive manufacturing: In-situ characterization

In-situ crack growth in WAAM Ni-superalloy IN-625

- Load Rig (50KN)
- Surface (DIC) and bulk (ND) strain field around crack during loading.
- Effect of crack orientation: elastic strain distribution is anisotropic

In-situ strain monitoring during continuous metal printing

INCONEL 718 Laser Direct Metal Deposition (wire)

Publication 2020 Cabez et al. XX

THE EUROPEAN NEUTRON SOURCE

In-situ strain monitoring during continuous metal printing Processing considerations

• <u>IR cameras</u>: Stable thermal gradient is reached in the printed part at 4 mm from the melt pool after **8 layers**.

INTITU

- SEM analysis: the microstructure stabilises after 4 layers
- SALSA monitoring:

□ *melt pool* region stabilized after 29 layers

D near melt pool and far-field, after **11** layers

=> Only neutron diffraction disclosed the stable regimes and offsets of the Laser DMD process in Inconel 718

Strain Monitoring During Laser Metal Deposition of Inconel 718 by Neutron Diffraction, S Cabeza, B Özcan, J Cormier, T Pirling, S Polenz, F Marquardt, TC Hansen, E López, A Vilalta-Clemente, C Leyens, Superalloys 2020, 1033-1045

Powder diffraction: to reveal phases, location of atoms in lattice

=> Structural evolutions and phase transformations of materials under varying environmental conditions

- Various sample environments available (furnace, cryostat, magnet, pressure cell, magnetic levitation, etc.)
- Spatially resolved phase analysis, texture determination

Investigation of alloy formation during a synthesis process

In situ neutron diffraction of the hightemperature ceramic material Ti3SiC2 was performed. Powder diffraction patterns were taken every 0.9 seconds while the precursors were heated from 850°C to 1050°C. Riley at al. 2006

Neutron diffraction => Structure of aged Ni-Cr based alloys

- Motivation: understanding alloy ageing
- Neutron diffraction in complement of several other techniques

Neutron Radiography and tomography

specific contrast schemes

THE EUROPEAN NEUTRON SOURCE

Radiography and tomography @ ILL: NEXT

- Main features:
 - Simultaneous x-ray and neutron tomography
 - Spatial resolution: from 4 μm
 - Max field of view: 16x16 cm²
- Examples of use cases: highly x-ray absorbent devices, quantitative imaging of fluid flows, residual water in metalic pieces, boron distribution.

A polymer joint is missing: this is easily visible through the metallic structure. Picture: LLB-CEA

н	H Maroscopic cross section for thermal neutrons. Values are in cm-1. Taken from Peetermans et al. 20												al. 2015)	He		
3.44																	0.02
Li	Be	Be Increasing neutron attenuation B C N O											F	Ne			
3.30	0.79	101.6										0.56	0.43	0.17	0.20	0.10	
Na	Mg												Si	P	S	CI	Ar
0.09	0.15	0.1 0.11											0.12	0.06	1.33	0.03	
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.06	0.08	2.00	0.60	0.72	0.54	1.21	1.19	3.92	2.05	1.07	0.35	0.49	0.47	0.67	0.73	0.24	0.61
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
0.08	0.14	0.27	0.29	0.40	0.52	1.76	0.58	10.88	0.78	4.04	115.1	7.58	0.21	0.30	0.25	0.23	0.43
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
0.29	0.07		4.99	1.49	1.47	6.85	2.24	30.46	1.46	6.23	16.21	0.47	0.38	0.27	-	-	•
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
-	0.34		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lanthanides		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
		0.52	0.14	0.41	1.87	5.72	171.47	94.58	1479.0	0.93	32.42	2.25	5.48	3.53	1.40	2.75	
Actinides		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
		-	0.59	8.46	0.82	9.80	50.20	2.86	-	-	-	-	-	-		-	

FOR SOCIET'

Grenoble Alpes

Neutron imaging: control of gluing integrity

Aircraft composite materials

Issue: detection of glue (low atomic number) within the metallic matrix (principally very complicated for Xrays)

=> Defective area clearly detected

4D imaging of lithium-batteries using correlative neutron and X-ray tomography

⇒virtual unrolling technique: temporally and spatially resolved tracking of lithium intercalation and electrode degradation

Ziesche RF, Arlt T, Finegan DP, et al. 4D imaging of lithium-batteries using correlative neutron and X-ray tomography with a virtual unrolling technique. *Nat Commun.* 2020;11(1):777. Published 2020 Feb 7. doi:10.1038/s41467-019-13943-3

Original figures from the article are licensed under Creative Commons Attribution 4.0 International License http://creativecommons.org/.

Real-time neutron imaging: following water path

• Water path and quantification within running a fuel cell (CEA-LITEN, ILL, UGA)

Increasing operation time

Neutron imaging of operando proton exchange membrane fuel cell with novel membrane, Lee et al., 2021, J. Power Sources, <u>https://doi.org/10.1016/j.jpowsour.2021.229836</u> Quantitative multi-scale operando diagnosis of water localization inside a fuel cell, Morin et al., 2017, J. Electrochem. <u>10.1149/2.1401614jes</u>

liten

Ceatech

Neutron radiography: an example Water flow in geomaterials

Real-time imaging A. Tengattini, Uni. Grenoble Alpes

=>tracking of water pathways: infiltration, drying, etc.

> Water within the rock is easily visible: red, violet then black indicate an increasing water content.

Rock sample: 4cm in diameter, 7 cm in height 1 image taken every 100 ms

UNIVERSITÉ Grenoble Alpes

THE EUROPEAN NEUTRON SOURCE

Small-Angle Neutron Scattering SANS

statistical information on features in the range 1-900nm

Reflectometry

investigation of layers in the range 1-600 nm

THE EUROPEAN NEUTRON SOURCE

Small angle Neutron scattering Silica-Rubber Composites

- Neutrons => polymer
- X-rays => silicium
- Several findings...

Under stretching, the nanoparticles acts as an additional cross-linked junction

Bouty et al, 2016, Interplay between polymer chain conformation and nanoparticle assembly in model industrial silica/rubber nanocomposites

Direct pictures of the microstructure

TEM

SANS

SAXS

Neutrons are mainly sensitive to the polymer, statistical info under operational conditions

X-rays are mainly sensitive to Silicium, statistical info under operational conditions

SANS: Nanoprecipitates in alloys

SANS can probe the **nanostructures of precipitates** and nucleation in metal.

Ni based nanoprecipitates ~ ellipsoids

E. W. Huang et al. Applied Physics Letter 93, 161904(2008)

In-situ SANS can obtain the quantitative information of growth rate of nanoprecipitates

Precipitate evolution in Ti-5AI-5Mo-5V-3Cr-0.3Fe ~disk shape

James Coakley et al. Journal of Alloys and Compounds 623, 146(2015)

000000

Neutron Reflectometry: Investigation of interfaces on silicon wafers

Segura et al. 2015, Hydrogen accumulation as the origin of delamination at the a-carbon/SiO2 interface, Journal of Applied Physics

EOR SOCIET

Irradiation with neutrons (and more)

Low energy neutrons (TENIS)

Main Applications

- Single-event effects (SEE) testing
- Qualification of HiRel components for ground and aeronautical applications

14MeV energy neutrons (GENESIS)

Main Applications

- Ramdon fault injection on large systems
- Single-event effects (SEE) testing for microelectronics
- Pre-qualification of components
- Debug and preparation for high energy protons testing

Pulsed synchrotron X-rays focused beam

Main Applications

- Spatially localised fault injection on microchips
- Single-event effects (SEE) testing for microelectronics
- Pre-assessment of the sensitivity of a microchip
- Debug and preparation for heavy ion testing

NANO ELEC.

Irradiation of electronic components at ILL

- Thermal and Epi-thermal Neutron IrradiationS (TENIS)
 - Beam with a fission spectrum
 - Thermal neutrons (E<0,625 eV): 88%
 - 。 Epithermal neutrons (0,625<E<1MeV): 12%
 - 。Fast neutrons (E>1MeV): 0,585%
 - Flux_{th+Eth}: 2,4 n.cm⁻².s⁻¹ estimated by Au foils activation at the sample position for a reactor power of 55MW
 - Adjustable beam size from $1x1 \text{ mm}^2$ to $50 \times 50 \text{ mm}^2$

=> Ideal for single-event testing of COTS components and devices from borated processes

- A calulated flux of gamma coming from the reactor, compatible with Total Iionizing Dose testing
 - $\Phi\gamma = 7.5 \times 10^8 \ \gamma/cm^2/s$
 - Dose Rate = 18 Gy/h (1,8 KRad/h)
 - . Maximum dose rate reachable using Cd: 115 Gy/h (11,5 kRad/h)

Image of the beam

NANOELEC.

INSTITUT LAUE LANGEVIN

How to work with the ILL and the ESRF?

Public Beam Time

Results must be published, free of charge

- Universities with Industry
- Industry on its own
- Innovation-led long term projets

Technology Transfer

- Licencing technologies
- In-house manufacturing
- Consultancy

Client Services

- Rapid access
- Full IP rights to client
- Paid-for services

Collaboration and Grants

- Industry sponsored staff (PhD, post-doc, trainees...)
- Horizon Europe, French PIA, IRT, UK CASE, etc.

FOR SOCIETY

Thanks for your attention!

caroline.boudou@ill.eu +33 476 207 209

industry@ill.eu

THE EUROPEAN NEUTRON SOURCE