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Machine Learning and Quantum Computing
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Quantum Computers

e The computer vendors have an ambitious roadmap

Number of qubits IBM
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D-Wave plans a quantum annealer of 7000 qubits in 2024
Rigetti plans a gate-based system of 1000 qubits in 2026 and 4000 qubits in 2027
European Commission supports projects to 1000 qubits in 2027 CS
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Reduced energy usage

Where energy gains
will necessarily occur

Number »
of operations Classical Quantum
required

here quantum computer Problem size
might not save energy instance, number to factor)

We need to find where the transition occurs
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Quantum computing basics

* A qubit is a quantum system with two levels

a|0>+B|1>

and we observe  P(|0>) = |a|2and P(|1>) = |B|?

* A quantum circuit performs an operation

on a qubit q -.—

* n qubits encode 2" states in parallel.
This is called superposition.

e 2 qubits can be intricated.
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Quantum Neural
Networks
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Quantum Convolutional Neural Network

Quantum Layers and Classical Optimization

Data encoding
« Encoding of the images using a cluster state model
Quantum convolution
« Combine adjacent qubits with a convolution circuit
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Quantum pooling
» Pool N qubits in N/2 qubits by reducing the intrication with a pooling circuit
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Classical optimization
» TensorFlow functions
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Ref: M. van Waveren et al, Comparison of Quantum Neural Network Algorithms for Earth
Observation Data Classification, Proceedings of IGARSS 23, Pasadena, California, 2023.
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Scaling of feedforward time
« Classical O(N2)
 Quantum O(N)
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Other quantum neural network algorithms

* Quantum Contrastive Learning Algorithm

Ref: V. Defonte et al, Quantum Contrastive Learning for Semantic Segmentation of Remote
Sensing Images, Proceedings of Big Data from Space 23, Vienna, 2023.

 Quantum Long Short Term Memory Algorithm

Ref: H. Painchart et a/, Quantum Algorithm for the Analysis of Temporal Sequences of Satellite
Images, accepted at IGARRS 24, Athens, 2024.
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Orthogonal Neural Network

Neural network algorithm written as linear algebra operations with
orthogonal weight matrices

“H I R,(+0/2) I H+
{Hle{R,(—0/2) 18l H |

Convert the linear algebra operations into quantum circuits
« Use the Reconfigurable Beam Splitter gate
 Define quantum pyramidal circuit with this gate
» Add data loader circuit

Scaling of feedforward time
 Classical O(N2)
e Quantum O(N)

Can be executed either on quantum hardware or on classical hardware.

Ref: 1. Kerinidis, J. Landman, N. Mathur, Classical and Quantum Algorithms for CS
13 Orthogonal Neural Networks, Attps://arxiv.org/pdf/2106.07198 - ~
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Quantum
Constrastive
Learning
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Hybrid Contrastive Learning Framework

CNN Quantum
encoder representation Representation
network

:

Anchor patch

Spatial
augmentation

Fi - \ "
Eéﬁ F- Triplet Loss
) A

Input image

Negative patch

Ref: V Defonte et a/, Quantum Contrastive Learning for Semantic Segmentation of Remote
Sensing Images, Proceedings of Big Data from Space 23, Vienna, 2023. ,_(__S\
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Parameterized Quantum Circuit
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16

U3(62)

¢ 4-qubits version of the circuit from Cong et al

« Adapted to 8-qubits in this work
e Can be run on IBM quantum computer
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Results
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Method outline

me QCNN 1 o

Ascending i QCNN 1
images |

e QCNN 1 o

_ Defores-
tation

g QCNN 1

Descending W Sotelile m
images |, acnn 1 B

oy QCNN 1

Ref: H. Painchart et a/, Quantum Algorithm for the Analysis of Temporal Sequences of Satellite
0 Images, accepted at IGARRS 24, Athens, 2024. /(__S_\
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Model Accuracy Results

20

No iterations | Average Accuracy Accuracy
Accuracy Stable Forest | Deforestation

QCNN
Ascending

QCNN
Descending

QLSTM
Full Model
Final Model
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100
21
11

76.5 %

75.2 %

76.5 %
75 %
81.3 %

87 %

79 %

52.9 %
96.2 %
85.7 %

67.3 %

71.6 %

100 %
56.2 %
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Ising Model
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Method outline

Spectral Spatial
information

information

Binary SVM for Ising model on
each class quantum
annealer
training [ Pixelwise Predicted
per-class labels

probability
maps

Training
labels

Ref: B. Gardas et al, Hyper-spectral image classification using adiabatic quantum computation,
Proceedings of IGARSS 23, Pasadena, California, 2023.

Ref: P Gawron et al, What could be achieved with a Million qubits quantum annealer in ,_(__S\

2 Remote Sensing? Accepted at IGARSS 24, Athens, Greece, 2024. a Sopra Sterla company



Ising model

» Ising model is a random Markov field

« Image is mapped on a grid

» A local energy is associated with each pixel

« A total energy is associated to the graph
Onevsrest: H(s) = — Y;hss; — B

S.S.
0]
Potts mOdeI: H(S) = - ZiZC hi’ csi'c - :le] Si’ clsj’ 2" Y Zi,c(si c + 2)2

i
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Adiabatic Quantum Computing

The D-Wave quantum annealer is used to solve the Ising model

H(t) = g()H, + AOH,

H : Initial Hamiltonian of the quantum annealer
Hp : Hamiltonian corresponding to our problem

If we start the computation in the ground state of H,, then by varying g(t) and A(t), we
end up in the ground state of H, for large annealing times.

The ground state of H, corresponds to our solution.

Potts model results on D-Wave 2000-qubit system
» Patch size: 8x8 pixels

Potts model results on D-Wave 5000-qubit Advantage system in Jilich

» Patch size: 14x14 pixels
24

Hz|
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p=0.04

SVM Annealer

Ground truth

Inferred classes
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Ground truth

Annealer

Prabability
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Ground truth Annealer

Ground truth B=0.14 Inferred classes
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B=0.5

SVM Annealer

Ground truth

B=0.5 Inferred classes

Ground truth
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B=0.05
0.6242 - Acc quantum

Acc classic

Potts model Image

Classification
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Ground truth with
simulated noise

Potts
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B=0.1
Acc classic = 0.6242 - Acc quantum = 0.9201

Classification Potts model Image
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Ground truth
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p=0.2
Acc classic = 0.6242 - Acc guantum = 0.9861

Potts model Image

Ground truth

Ground truth with
simulated noise
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B=0.3
Acc classic = 0.6242 - Acc quantum = 0.9928

Potts model Image
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p=0.4
Acc classic = 0.6242 - Acc quantum = 0.9856

Classification Potts model Image
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Quantum improvement

Ground truth with simulated noise
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B=0.025
Acc classic = 0.9376 - Acc quantum = 0.9639

Classification Potts model Image

Ground truth

Pre-processing with
Random Forest
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B=0.05
Acc classic = 0.9376 - Acc quantum = 0.9861

Classification Potts model Image
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p=0.1
Acc classic = 0.9376 - Acc quantum = 0.9974

Classification Potts model Image

Ground truth

Pre-processing with
Random Forest
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B=0.2
Acc classic = 0.9376 - Acc quantum = 0.9985

Classification Potts model Image

Ground truth

Pre-processing with
Random Forest
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B=0.3
Acc classic = 0.9376 - Acc quantum = 0.9964

Classification Potts model Image

Ground truth
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Quantum Improvement

Pre-processing with Random Forest
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SVM
pre-processor
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B=0.025
Acc classic = 0.9052 - Acc quantum = 0.9232

Classification

“Ground truth

Probability

-1/2

“S
— —

a Sopra Steria company



SVM
pre-processor

42

B=0.05
Acc classic = 0.9052 - Acc quantum = 0.9443
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SVM
pre-processor
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B=0.1
Acc classic = 0.9052 - Acc gquantum = 0.9644

Classification Potts model Image
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B=0.2
Acc classic = 0.9052 - Acc quantum = 0.9778

Classification Potts model Image
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SVM
pre-processor
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B=0.3
Acc classic = 0.9052 - Acc quantum = 0.9722
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Quantum Improvement
Pre-processing with SVM
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Conclusion
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Current state of the art

« We see improvements in the classification and segmentation accuracies

« Quantum speedup is possible if the quantum computers become more powerful
» Reduced energy usage will come with quantum speedup

* Quantum annealers claim to be production-ready

» Gate-based quantum computers are not yet production-ready



Thank you for your interest!
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